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Abstract—This technical report presents our semi-supervised
acoustic scene classification (ASC) framework submitted to the
APSIPA ASC 2025 Grand Challenge, which focuses on city-
and time-aware ASC under limited labeled data. Our approach
leverages a multi-modal network architecture that fuses audio
mel-spectrograms with spatiotemporal metadata (city identity
and timestamps) to capture dynamic acoustic scene variations
across urban environments. The model employs a residual-based
CNN with attention mechanisms for robust feature extraction, en-
hanced by multi-modal fusion. To address label scarcity, we adopt
a staged semi-supervised pipeline: pre-training on TAU Urban
Acoustic Scenes 2020 and CochlScene datasets with specaugment
and mixup augmentations, and then iterative fine-tuning on
challenge data with pseudo-labeling to expand the training set was
conducted, resulting in performance improvement. Experimental
results demonstrate the efficacy of our city/time-aware design and
semi-supervised strategies on our validation data.

I. INTRODUCTION

Acoustic scene classification (ASC) has become a critical
research area in computational audition, with applications
ranging from smart city monitoring to intelligent audio devices.
Traditional ASC systems typically treat acoustic scenes as
static categories [1], failing to account for the significant
variations that occur across different geographical locations
and temporal contexts. This limitation becomes particularly
evident in real-world scenarios where the acoustic character-
istics of the same scene category such as a public square or
a shopping district can vary dramatically between cities due
to cultural differences and urban design [2], as well as across
different times of day or days of the week [3]. The City and
Time-Aware Semi-supervised Acoustic Scene Classification
Challenge in APSIPA ASC 2025 seeks to address these gaps by
incorporating city-level location data and precise timestamps
alongside audio samples, pushing the boundaries of current
ASC technology toward more context-aware and adaptable
solutions.

The challenge builds upon previous work in semi-supervised
learning for ASC while introducing novel dimensions of
complexity. While the ICME 2024 [4] challenge focused on
addressing domain shift across geographic regions, it did not
explicitly leverage city identity and temporal metadata as
discriminative features. This year’s competition provides a
unique opportunity to explore how these contextual cues can
enhance classification performance, particularly when labeled

data is scarce, which is a common constraint in real-world
applications [5]. By encouraging participants to develop meth-
ods that effectively utilize both labeled and unlabeled data
in conjunction with spatiotemporal information, the challenge
aims to foster innovations in semi-supervised and domain
adaptation techniques that can better handle the dynamic nature
of acoustic environments.

From a practical standpoint, the outcomes of this challenge
hold significant potential for industrial applications. Urban
sound monitoring systems, smart devices, and acoustic ana-
lytics platforms stand to benefit from models that can adapt
to city-specific soundscapes and temporal patterns [6]. For
instance, a subway station in Beijing may exhibit different
acoustic characteristics compared to one in Shanghai, and
these may further vary between morning rush hours and late-
night operations. By capturing these nuances, the developed
solutions can lead to more robust and context-sensitive ASC
systems. Moreover, the focus on semi-supervised learning
aligns with the industry’s need for scalable solutions that
can leverage abundant unlabeled data, making the research
impactful.

In this paper, we present our approach submitted to the
challenge, detailing our methodology for integrating spa-
tiotemporal metadata with audio features in a semi-supervised
framework. Our work explores novel techniques for feature
representation, domain adaptation, and contextual fusion, with
the goal of improving classification accuracy across diverse
urban environments and time periods. Through extensive ex-
perimentation and analysis, we demonstrate how city and time
awareness can significantly enhance ASC performance while
maintaining generalizability.

II. PROPOSED METHOD

A. Netork Architechture

The overall network structure is shown in figure 1. It pro-
cesses input audio spectrograms (shape: [batchsize, 1, frames,
bins]) by first passing them through a 7 × 7 convolutional
kernel for initial spatial feature extraction, followed by batch
normalization and ReLU activation before entering a 3×3 max
pooling layer for spatial compression. The data subsequently
flows through four residual blocks, where each block employs
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Fig. 1. Overal network architechture.

3 × 3 convolutions coupled with attention mechanisms (se-
quentially applying channel then spatial attention [7]). As the
channel dimensions progressively expand to [64,128,256,512]
respectively, four downsampling operations (stride=2) are per-
formed to deeply extract time-frequency features. The feature
map then enters an innovative pooling fusion stage: spatial
attention weights are element-wise multiplied with the feature
map and summed across time-frequency dimensions, while
separate global average pooling and max pooling operations
are computed, and these three vectors are additively combined
to form robust audio feature representations. When multimodal
processing is enabled, this 512-dimensional vector is concate-
nated along the feature dimension with location embedding
tensors (mapping discrete location IDs to embeddings) and
temporal feature tensors (processed through a two-layer fully
connected network), then compressed to 256 dimensions with
a fusion layer incorporating batch normalization, ReLU activa-
tion, and dropout [8]. Finally, regardless of modality mode, the
features flow through a three-layer fully connected classifier
(each containing batch normalization, ReLU activation, and
0.4 dropout regularization), progressively compressed through
128 to 64 dimensions before outputting class probability
distributions at the target classification dimension. The detailed
designs of resblock and classifier in the network are depicted
in Figure 2.

B. Data & Augmentation

For pre-training, we use the development dataset of TAU
urban acoustic scenes 2020 mobile [9] and CochlScene [10].
In order to keep the same format with the data proposed
by challenge, we normalized these data to 44.1 kHz and 10
seconds each. The types of scene in these 3 dataset are not
the same, so we manually perform the classification for pre-
training data to adapt the challenge’s requirements. The details
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Fig. 2. Details of resblock and classifier.

are illustrated in Table I. During pre-training we use 20% of
the data for validation and 80% for training, and the following
augmentation methods are applied.

SpecAugment. SpecAugment [11] is a data augmentation
method that operates directly on audio mel-spectrograms,
enhancing model robustness through three key operations: time
shifting, frequency masking, and time masking. This approach
simulates variations in real-world audio signals by disrupting
local continuity in the mel-spectrogram, forcing the model
to learn more global features rather than local details. It is



TABLE I
RELATIONSHIP BETWEEN THE LABEL TYPE OF CHALLENGE DATA AND OUR PRE-TRAINING DATA

Challenge Data TAU Urban Acoustic Scenes 2020 CochlScene

Labels

bus bus bus
airport airport -
metro metro station, metro subway, subway station

restaurant - restaurant
shopping mall shopping mall -
public square public square -

urban park park park
traffic street street traffic street

construction site - -
bar - cafe

particularly effective for addressing common environmental
noise interference in acoustic scene classification. It does
not require additional computational resources to generate
synthetic samples and can improve model’s performance by
simply applying masking operations to the original spectro-
gram .

Mixup. Mixup [12] employs linear interpolation to blend
samples and their labels from different categories, constructing
new samples that lie between the original ones to enhance
model generalization. In ASC, this method combines spec-
trograms of two different scenes at a random ratio while
mixing their corresponding labels proportionally, mimicking
the gradual transitions and overlaps of real-world soundscapes.
This augmentation technique effectively mitigates model over-
fitting to specific samples, leading to smoother decision bound-
aries—especially useful for handling cases where different
classes share similar acoustic characteristics. Unlike SpecAug-
ment, Mixup expands the training data distribution by implic-
itly modeling relationships between samples. In our system,
we follow the setting of mixup in [13] and the parameter α is
set to 1.0.

C. Training

During training, the development set’s metadata files are
shuffled after setting the random seed to 1234 and split into
training and validation sets at an 8:2 ratio. The training process
employs a batch size of 64. Training process sets an upper
limit of 1000 epochs with an equally stringent early stopping
mechanism. Training is terminated if validation performance
fails to improve for 20 consecutive epochs. This stopping
condition provides ample time for model convergence. The
Adam [14] optimizer is used with an initial learning rate of
5×10−4, a relatively small value conducive to stable training.
The learning rate scheduling adopts a step decay strategy,
multiplying the learning rate by a decay factor of 0.9 every
2 epochs, forming a smooth decay curve. The loss function in
all stages is cross entropy [15].

As shown in Figure 3, our semi-supervised training frame-
work follows a four-stage pipeline [4] that progressively en-
hances model performance by effectively utilizing both labeled
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Fig. 3. Training and evaluation process.

and unannotated data. The process begins with pre-training on
pre-training data using the proposed network with specaug-
ment [11] and mixup [12] augmentation, establishing a robust
pre-trained model. In the second supervised fine-tuning phase,
we adapt this pre-trained model to our specific classification
task by carefully monitoring validation metrics to save the
best fine-tuned model. The third pseudo-labeling stage then
leverages this optimized model to generate high-confidence
predictions for unlabeled examples of developing data, creating
expanded training sets that combine original annotations with
these labeled samples. Finally, the pseudo-label training phase
retrains the model on this augmented dataset, maintaining
identical hyperparameters but benefiting from significantly
more training examples, ultimately producing our final model.
This structured approach achieves an optimal balance between
supervised learning precision and semi-supervised learning’s
ability to extract knowledge from unlabeled data, resulting in
models with both high accuracy and excellent generalization
capabilities.

III. RESULTS

During the experiment, the model’s training accuracy at
different stages was verified. The results is illustrated in Table
II The average accuracy on the validation data during the pre-
training phase reached 93.70%, demonstrating that the model



TABLE II
TRAINING ACCURACY ON VALIDATION DATA OF DIFFERENT STAGES.

Stage Accuracy (Average)

Pre-Training 93.70%
First Round Fine-Tuning 87.00%

Second Round Fine-Tuning 87.60%

was able to effectively learn the data characteristics during
pre-training. During the first round of fine-tuning, the average
accuracy on the validation data decreased slightly to 87.00%.
This may be due to the need for the model to adjust to the new
data distribution during fine-tuning, resulting in a temporary
drop in accuracy. After the second round of fine-tuning, the
average accuracy on the validation data increased slightly to
87.60%, indicating that after multiple rounds of fine-tuning,
the model’s performance on the validation data has gradually
stabilized and improved. Overall, as the training phase pro-
gressed, the model’s finally became stable on validation data.

IV. CONCLUSION

In this technical report, we detailed our system submitted
to APSIPA ASC 2025 Grand Challenge: City and Time-
Aware Semi-supervised Acoustic Scene Classification. We
used publicly released datasets including TAU and CochlScene
during pre-training and fine-tune the model with the data
provided by oganizers to address the ASC task. We employed
a self-designed model to infuse the multi-modal data and
generate reliable pseudo-labeled data. Additionally, we used
specaugment and mixup augmentations to obtain the final
results.
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